Threshold Voltage Control of Recessed-Gate III-N HFETs Using an Electrode-less Wet Etching Technique

Yi-Che Lee*, Cheng-Yin Wang, Tsung-Ting Kao, and Shyh-Chiang Shen

School of Electrical and Computer Engineering
Georgia Institute of Technology
777 Atlantic Drive NW, Atlanta, GA 30332-0250
* POC Phone: 404-385-8327; E-mail: ylee302@mail.gatech.edu

Keywords: AlGaN, GaN, field-effect transistor, electrode-less wet etching

Abstract

We reported an electrode-less wet etching technique that achieves smooth etched surface and uniform recess depth for recessed-gate AlGaN/GaN HFETs. Constant etching rate and high etching selectivity between III-N layers were observed. After wet etching, the threshold voltage (V_{th}) of HFETs was shifted from -6V to 0.06V and the maximum transconductance was increased from 86 mS/mm to 116 mS/mm. The sub-threshold slope was reduced from 119 mV/decade to 83 mV/decade. The standard deviation of V_{th} is 177mV measured from 60 fabricated HFETs. Maximum drain current ($I_{D,max}$) of 420 mA/mm was achieved at $V_{GS} = 4$ V. The results suggest that electrode-less wet etching can achieve precise control of threshold voltage for E/D-mode III-N HFETs.

Introduction

GaN-based field-effect transistors have been a focused topic for its high-current-drive, high switching-frequency, and high breakdown voltage [1,2]. Most of the reported devices have normally-on (D-mode) characteristics with threshold voltage of -3 to -6 V [3-5]. In mixed-signal integrated circuits and monolithically integrated circuits, E/D mode GaN HEMT MMICs are interested research topics. To control the threshold voltage of GaN-based HFETs, several techniques, including fluoride-treated HFETs[6], p-type III-N gate[7,8], and tunnel junction HFETs[9], have been demonstrated.

The recessed-gate structure is considered advantageous over other approaches for its simplicity and the ability to achieve higher transconductance. Plasma-enhanced dry etching techniques were typically used for AlGaN/GaN and InAlN/GaN HFETs [10,11]. However, recess depth control and etching damage are challenging for dry-etching techniques. Photo-electrochemical wet etching techniques with electrodes [12] and without electrodes [13,14] were also studied on III-N materials. Nevertheless, these wet-etching techniques suffer from non-uniform etching that result in rough etched surface or threshold voltage uniformity issues if the process is not well controlled.

In this study, we report a new electrode-less wet etching technique using KOH-based solution. It shows the ability to achieve smooth etched surface and potentially uniform device threshold voltage control in III-N HFETs. Constant etching rate and high etching selectivity between different III-N layers were also observed. Uniform recess depth and smooth etched surface were achieved. The fabricated HFETs show that the threshold voltage can be shifted from -6V to 0.06V after wet etching. The transconductance is also increased from 86 mS/mm to 116 mS/mm before and after the recessed-gate etching, respectively. Accordingly, the sub-threshold slope is reduced from 119 mV/decade to 83 mV/decade. The statistical data show that the average and standard deviation of V_{th} is -0.1V and 177 mV, respectively, from 60 fabricated recessed-gate HFETs. High current drive (420 mA/mm), high breakdown voltage (> 1.2 kV) and low specific on-resistance (6.6 mΩ-cm²) were measured on fabricated 0.3-mm-wide recessed-gate HFETs. The 10mm-wide device shows $I_{D,max}$ of 3.7 A at $V_{GS} = 4$V with specific on-resistance of 4 mΩ-cm². Compared to other approaches, these results indicate that the electrode-less wet etching could be a viable approach to achieve desire threshold voltage with good device performance for III-N HFETs.

Layer Structure and Device Fabrication

The AlGaN/GaN HFET wafer in this study was grown by a commercial epi-vendor. The layer structure consists of undoped AlGaN, a thin AlN layer and a GaN buffer layer on a 3-inch Si substrate. The fabrication processing of AlGaN/GaN HFETs started from the mesa isolation. After the mesa isolation, a PECVD SiO₂ layer was deposited to serve as the electrode-less wet etching mask. A mixture of potassium persulfate and potassium hydroxide was prepared. The ultraviolet light was used to catalyze the electrolyte without the need for additional current source during the etching [15]. After the recessed-gate etching, TiAl-based ohmic metal was deposited and annealed for the drain and source contact pads. Nickel gate electrodes were deposited using an electron-gun evaporator. The transistors were then passivated by
Benzocyclobutene (BCB), followed by the via-hole opening. Finally, thick Metal-1 layer was deposited for interconnects. The devices in this set of study have a range of gate width \(W_G \) from 0.3 mm to 10 mm.

RESULTS AND DISCUSSION

Shown in Figure 1 is a plot of the recess depth as a function of the recess gate etching time measured by atomic force microscopy (AFM). At the beginning of wet etching, a constant etching rate of 1.1 nm/min was measured until the recess depth reached ~30 nm. After 30 minutes of etching, the recess depth remained unchanged. The result indicates that high etching selectivity can be achieved between AlGaN and AlN layers in this wet-etching system to achieve high uniformity across the wafer.

![Figure 1](image1.png)

Figure 1 The recess depth versus etching time of the recessed-gate process on AlGaN/GaN HFETs.

The surface morphology of the etched and as-grown area was measured by AFM, as shown in Figure 2. The etched area has an RMS surface roughness of 0.37 nm in a 1×1 μm² 2-dimensional areal scan, which is comparable to that of 0.255 nm on the as-grown surface. It shows that a smooth etched surface can be achieved with this unique wet etching approach.

![Figure 2](image2.png)

Figure 2 The surface morphology in 1×1 μm² area measured by AFM on (a) the etched surface and (b) the as-grown surface

For comparison, AlGaN/GaN HFETs with and without the recessed-gate etching were fabricated. The measured \(I_D-V_{GS} \) curves of a 0.3-mm-wide HFET \((L_{GD} = 13 \mu m \text{ and } L_G = 3 \mu m)\) with and without recessed-gate etching at \(V_{DS} = 10 \text{ V} \) are shown in Figure 3. The threshold voltage \(V_{th} \) is determined at \(I_{DS} = 1 \text{ mA/mm} \). For as-grown HFETs, \(V_{th} = -6 \text{ V} \) were measured while \(V_{th} \) is shifted to 0.06 V after the recessed-gate etching. The on-off ratio is approximately identical \((2 \times 10^6)\) on both devices while the maximum transconductance \((g_{m,max}) \) is increased from 86 mS/mm to 116 mS/mm on the recessed-gate HFET due to reduced barrier thickness. The off-state drain leakage current remains < 200 nA/mm for devices with and without the recessed-gate etching. These results confirm that good Schottky gate properties were achieved on recessed-gate devices.

![Figure 3](image3.png)

Figure 3 The measured \(I_D-V_{GS} \) curves of 0.3-mm-wide HFETs with and without recessed-gate etching.

For the recessed-gate devices, the sub-threshold slope \((S)\) is reduced from 119 mV/decade to 83 mV/decade. The sub-threshold slope of can be expressed as:

\[
S \equiv \frac{kT}{q} \ln \left(10 \right) \left(1 + \frac{C_Q + C_{it}}{C_i} \right)
\]

where \(C_i \) is the AlGaN capacitance, \(C_Q \) is the quantum capacitance, and \(C_{it} \) is the interface-trap capacitance\[16\]. At deep sub-threshold region where we calculate the sub-threshold slope, \(C_Q \) is much smaller than \(C_i \) due to the Fermi–Dirac distribution so it is negligible \[11\]. Assuming the recessed-gate etching stops at the AlN layer, the interface-trap capacitance after the wet etching is 3 μF/cm² while that on the as-grown HFETs is 0.2 μF/cm². The higher interface-trap capacitance suggests that some surface damage may still exist in the recess region. However, this capacitance may be over-estimated. More detailed studies will be required to reveal the impact of wet etching on the surface properties.

To investigate the threshold voltage uniformity, 60 devices with different \(W_G \)’s \((3,5,6, \text{ and } 10 \text{ mm})\) were measured. Figure 4 shows a histogram of \(V_{th} \) for the fabricated HFETs. The data points were collected from on
a wafer piece with an area of $1 \times 0.5 \text{ cm}^2$. The averaged V_{th} is -0.1 V and the standard deviation for V_{th} is 177 mV. The relatively tight control of V_{th} suggests that uniform recess depth can be achieved with the electrode-less wet etching.

In Figure 5, the measured I_D-V_{DS} family curves for as-grown and recessed-gate HFETs with $W_G = 0.3 \text{ mm}$ and $L_{GD} = 13 \mu \text{m}$ are also shown for comparison. Compared to the as-grown HFETs with $I_{D_{\text{max}}}>510 \text{ mA/mm}$ at $V_{GS} = 1 \text{ V}$, recessed-gate HFETs showed lower $I_{D_{\text{max}}}$ of 420 mA/mm at $V_{GS} = 4 \text{ V}$. The specific on-resistance ($R_{on} \cdot A$) of 6.6 mΩ-cm2 for the recessed-gate HFET is higher than that for the as-grown D-mode HFETs (4.7 mΩ-cm2). Higher $R_{on} \cdot A$ and lower $I_{D_{\text{max}}}$ may be attributed to the higher access resistance in the recessed gate region.

The recessed-gate HFETs were also measured in an Agilent B1505A digital curve tracer with a pulse width of 100 μS and a duty cycle of 2%. Shown in Figure 6 are the family curves of an AlGaN/GaN HFET with $W_G = 10 \text{ mm}$. A maximum current of 3.7 A, corresponding to 370 mA/mm current density, is achieved at $V_{GS} = 4 \text{ V}$. The lower current density, when compared to 0.3-mm-wide devices, may be attributed to current spreading issue in multi-finger devices. Nevertheless, $R_{on} \cdot A = 4 \text{ mΩ-cm}^2$ was measured at $V_{DS} = 1 \text{ V}$ and $V_{GS} = 4 \text{ V}$.

Figure 7 shows a competitive device performance comparison for E-mode GaN-based field-effect transistors using different gate engineering approaches. Using the electrode-less wet etching recessed-gate technique, a 0.3-mm-wide HFET with $L_{GD} = 13 \mu \text{m}$ showed breakdown voltage of 1200V and $R_{on} \cdot A$ of 6.6 mΩ-cm2. It corresponds to a figure of merit (BV/R_{on}) of 240 MW/cm2.

Figure 4 The histogram of measured threshold voltages of HFETs

Figure 5 The measured I_D-V_{DS} curves of 0.3-mm-wide HFETs with and without the recessed-gate etching.

CONCLUSIONS

In summary, we report a potentially manufacturable electrode-less wet etching technique to fabricate recessed-gate AlGaN/GaN HFETs. Smooth etched surface and uniform threshold voltage can be achieved in these devices.
High current drive and low specific on-resistance were achieved on the fabricated recessed-gate HFETs. High breakdown voltage (> 1.2 kV) was also measured on the 0.3-mm-wide HFETs. The results suggest the novel electrode-less wet etching approach can be used in III-N HFETs for E/D-mode device implementation.

ACKNOWLEDGEMENTS

The research work is supported by Intersil Corp. under the program management of Dr. François Hébert. The authors are thankful for the facility support of the staff in the Microelectronic Research Center at the Georgia Institute of Technology in Atlanta, GA.

REFERENCES

ACRONYMS

HFET: Heterojunction Field Effect Transistor
D-mode : Depletion mode
E-mode : Enhancement mode
W_G: Gate width
L_GD: Gate-to-drain distance
BV: Drain-to-source breakdown voltage
R_on*A: Specific on-resistance