R\text{DS\text{ON} Stability of GaN High Voltage Power Devices Post Long-Term Stress:

A New Method to Screen Unstable R\text{DS\text{ON} Performers

International Rectifier Corp. ** 1333 S. Spectrum Blvd.
Chandler, AZ 85286 USA, *Corresponding Author’s Email: hkim1@irf.com

Keywords: R\text{DS\text{ON} stability, Screen method, Trap, GaN-on-Si, Dynamic R\text{DS\text{ON}, GaN power devices**

Abstract

An innovative method to filter out potentially unstable and unreliable R\text{DS\text{ON} drifting wafers is demonstrated in GaN-based power devices. Its concept is described and the correlation between screening test and long-term reliability data in terms of R\text{DS\text{ON} stability is also presented. In addition, we verify that this screening method can predict continuous dynamic R\text{DS\text{ON} characteristics, which is directly related to application performance.**

INTRODUCTION

Adoption of GaN-based heterostructures on Si substrates has been intensively considered in power electronics to achieve higher conversion efficiency and higher system cost competitiveness. This is because of the superior material properties such as high breakdown voltage, high carrier density, and high electron mobility, and remarkable technical advances of epitaxial growth on Si. However, for high voltage GaN technology to penetrate the real market, it should demonstrate not only long-term reliability and robustness but also long-term parametric stability. One should also note that there is no industry standard for long-term reliability tests to evaluate GaN-based power devices and predict actual life time from accelerated testing methodologies. In addition, conventional parametric tests have been used to screen out malfunctioned devices in the fab as typically performed in Si technology, but this methodology has failed to identify and predict long-term instability of high-voltage GaN-on-Si heterostructure field effect transistors (HFETs). Especially, on-resistance drift or drain current depression after long-term stress under high-voltage off-state has been one of the well-known issues to be solved in high voltage GaN-based power devices.

In general, it has been considered that R\text{DS\text{ON} drift is mainly due to electron trapping in GaN-based DC/RF power devices. Extensive attempts to identify physical origin of the trap sites have been made in different groups based on temperature-dependent and field-dependent characterization [1-4]. Typically, carbon-associated traps or other defect-related traps have been reported as a major source of electron trapping in high-voltage GaN-on-Si FETs. However, it is difficult to directly identify its real physical source and implement a solution. Thus, in parallel to making continuous efforts to find the origin of trap sites, it is necessary to develop an early detection technique for high R\text{DS\text{ON} drifting wafers based on wafer-level characterization without any time-consuming and cost-ineffective long-term test. Figure 1 shows that R\text{DS\text{ON} drift post 24hr-hot temperature reverse bias (HTRB) stress can predict high R\text{DS\text{ON} shifter after further stress. This result led us to further investigation about shorter-time stress but the detection efficiency on high R\text{DS\text{ON} shifter degrades as stress time decreases. Therefore, a way to accelerate R\text{DS\text{ON} increase has to be developed to improve signal-to-noise ratio for shorter-time stress.

In this work, we demonstrate our novel methodology to filter out potentially unstable and unreliable HV GaN HFETs in terms of R\text{DS\text{ON}. In addition, we will present new reliability tests such comprehensive dynamic R\text{DS\text{ON} characterization under both voltage and temperature stress, which can provide a more practical reliability performance in actual application.
In order to develop a screening method for R_{DSON} drift due to electron trapping, it is necessary to understand the nature of trapping and de-trapping. The capture and emission via trap sites are a function of electric field, temperature, and time. In principle, for electrons to be trapped under a certain electrical stress, the following three conditions have to be satisfied: 1) empty trap sites are available at one side, 2) electrons to be trapped are available at the other side, & 3) an electric field should be high enough for electrons to be injected from one side to the other. Thus, both stress voltage and stress temperature affects the capture rate of electrons as well as the emission rate of trapped electrons under electrical stress. The competition between the capture rate and emission rate would determine the amount of R_{DSON} drift. And trapping and detrapping processes are also time-dependent because it takes some time for carriers to be emitted or captured when an applied bias switches from off-state to on-state or from on-state to off-state. Both processes continue to progress until the trap sites, actively responding to the current bias condition, are fully occupied or empty.

In general, potential trap sites in AlGaN/GaN based heterostructure on Si substrate are available everywhere since a high density of defects is widely distributed across the GaN-based material grown on the foreign substrate. Thus, it is important to understand how the stress bias would affect entirely GaN-based FETs to better interpret R_{DSON} drift due to trapping effects. In the past years, we have electrically identified the primary source of the R_{DSON} drift from different tests. It has been observed that the epi-layers grown on Si substrates are the major contributor as many other publications have also reported [2, 5].

Stress Y is a vertical stress under which the Si substrate is negatively biased while the Source, Gate, and Drain contacts are tied together to the ground. Note that Stress X includes a lateral stress between the Gate and Drain as well as a vertical stress between the Drain and Si substrate while Stress Y has a vertical stress only across the buffer layer. It can be considered that electron trapping under Stress Y would happen preferentially across the buffer layer. Interestingly, both stress cases shows the same trend where R_{DSON} drift increases with stress voltage up to ~100V and then becomes saturated or slowly increases. This indicates that both stress cases can have the same active traps and these traps are across the buffer or epi-layers. Stress Y also gives a much stronger signal than Stress X because the vertical stress includes the buffer beneath the source and gate regions. That is why our proposed pre-screen method is based on the vertical stress.

In order to develop a screening method for R_{DSON} drift due to electron trapping, it is necessary to understand the nature of trapping and de-trapping. The capture and emission via trap sites are a function of electric field, temperature, and time. In principle, for electrons to be trapped under a certain electrical stress, the following three conditions have to be satisfied: 1) empty trap sites are available at one side, 2) electrons to be trapped are available at the other side, & 3) an electric field should be high enough for electrons to be injected from one side to the other. Thus, both stress voltage and stress temperature affects the capture rate of electrons as well as the emission rate of trapped electrons under electrical stress. The competition between the capture rate and emission rate would determine the amount of R_{DSON} drift. And trapping and detrapping processes are also time-dependent because it takes some time for carriers to be emitted or captured when an applied bias switches from off-state to on-state or from on-state to off-state. Both processes continue to progress until the trap sites, actively responding to the current bias condition, are fully occupied or empty.

In general, potential trap sites in AlGaN/GaN based heterostructure on Si substrate are available everywhere since a high density of defects is widely distributed across the GaN-based material grown on the foreign substrate. Thus, it is important to understand how the stress bias would affect entirely GaN-based FETs to better interpret R_{DSON} drift due to trapping effects. In the past years, we have electrically identified the primary source of the R_{DSON} drift from different tests. It has been observed that the epi-layers grown on Si substrates are the major contributor as many other publications have also reported [2, 5].

Stress Y is a vertical stress under which the Si substrate is negatively biased while the Source, Gate, and Drain contacts are tied together to the ground. Note that Stress X includes a lateral stress between the Gate and Drain as well as a vertical stress between the Drain and Si substrate while Stress Y has a vertical stress only across the buffer layer. It can be considered that electron trapping under Stress Y would happen preferentially across the buffer layer. Interestingly, both stress cases shows the same trend where R_{DSON} drift increases with stress voltage up to ~100V and then becomes saturated or slowly increases. This indicates that both stress cases can have the same active traps and these traps are across the buffer or epi-layers. Stress Y also gives a much stronger signal than Stress X because the vertical stress includes the buffer beneath the source and gate regions. That is why our proposed pre-screen method is based on the vertical stress.

Presently Infineon Technologies
stress voltage, both off-state and on-state pulses were switching continuously for 1 minute. Note that the stress biases have been kept on during the dynamic RDSON measurements at 100V to 480V and room temperature. The stress bias of 480V was also kept on while the test temperature increased to 75 °C and 150 °C. As shown in Figure 4(b), dynamic RDSON drift behavior became pronounced at high temperatures, attributed to more electron trapping and heating effects. High RDSON shifter by Test A clearly showed high dynamic RDSON drift and even the drift at 150 °C and 480V-stress gradually increased, indicating that it could be potentially unstable in the application point-of-view. However, low RDSON shifter exhibited much low dynamic RDSON drift and stable at 150°C and 480V-stress.

CONCLUSIONS

An innovative method to filter out potentially unstable and unreliable RDSON shifter after long-term stress is demonstrated in GaN-based power devices. The screened data is well-correlated to the long-term stability in terms of RDSON performance. The described method can identify and predict the long-term instability of high-voltage GaN-on-Si heterostructure field effect transistors in an actual application environment.

REFERENCES
